分数教学设计
在教学工作者实际的教学活动中,时常要开展教学设计的准备工作,借助教学设计可以更好地组织教学活动。那么什么样的教学设计才是好的呢?以下是小编为大家收集的分数教学设计 ,欢迎大家借鉴与参考,希望对大家有所帮助。
分数教学设计 1一、教学目标
1.经历探索分数基本性质的过程,理解分数的基本性质。
2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、 教学重、难点
教学重点是:分数的基本性质。
教学难点是:对分数的基本性质的理解。
三、教学方法
采用了动手做一做、观察、比较、归纳和直观演示的方法
四、教学过程
(一)、故事引入,揭示课题
1.教师讲故事。
猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?
讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。
引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
2.组织讨论。
(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,14=28=312,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:34=68=912。
(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:12=24=20xx。
3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了,
分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
( 二)、比较归纳,揭示规律
1.出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。
(1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。
板书:
(2)34是怎样变化成912的'呢? 怎么填?学生回答后填空。
(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以
相同的数)
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(板书:都除以)
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
3.出示例2:把12和1024化成分母是12而大小不变的分数。
思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?
4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
( 三)、沟通说明,揭示联系
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
( 四)、多层练习,巩固深化
1.口答。(学生口答后,要求说出是怎样想的?)
2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)
教学反思:
学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:
1、学生在故事情境中大胆猜想。
通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明 ……此处隐藏22489个字……理解并掌握分数加减混合运算的运算顺序,能正确进行分数加减混合运算。
2、学生学会分析把总数看作“1”,求剩余部分占总数的几分之几之类的实际问题的数量关系,会运用分数加减混合运算解决一些简单的实际问题,进一步提高解决实际问题的能力,发展数学应用意识。
3、学生在分析数量关系和探索计算方法的过程中发展数学思考。
4、学生在学习活动中,进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心。
教学重点:
分析求剩余部分占总量的几分之几的实际问题的`数量关系,关键是需要把被减数看作“1”。
教学难点:
能正确计算分数加减混合运算。
教学准备:
1、将本课故事题目、顺口溜、结语等内容制成课件。
2、用多媒体课件或小黑板出示“练习与应用”的第1—4题
教学流程:
一、故事导入
师:唐僧师徒一行到西天取经,路途遥远而艰辛,由于奔波劳累,大家口干舌燥,实在走不动了,师傅叫八戒去找些东西解渴,懒洋洋的八戒不去化斋,便从老农的瓜地里偷了一个西瓜,当师傅问他西瓜从何而来时,八戒吞吞吐吐的答不上来,这时师傅已经猜到八戒的西瓜八成是偷来的,因而十分生气,坚决不吃,并将八戒教训了一顿。悟空赶忙从八戒手里抢过西瓜说:“师傅不吃,我们3人就分了吧,每人吃1/2。”八戒一听急了,马上说:“不行,不行!西瓜是我拿回来的,我不能只吃1/2,没有1/4,也要1/5悟空就切了1/5给八戒。再切1/3给沙和尚,剩下的归自己,八戒一看直拍脑门大喊:“猴哥,我上当了!”亲爱的同学们你们知道八戒为什么喊上当了?
出示题目:有1块西瓜,沙师弟吃其中的1/3,八戒要吃其中的1/5,剩下的给悟空吃,悟空吃了这块西瓜的几分之几?
学生读题,猜想:悟空吃剩下的西瓜,怎样求剩下的几分之几?
设计意图:数学来源于生活又应用于生活。每个孩子都喜欢听故事,我通过讲故事,让学生明确生活中处处有数学。这样导入新课,能把枯燥的知识趣味化、生活化,感受数学知识和方法的应用价值,还能把学生的情感态度提升到一个新的境界。
二、探究新知
1、出示题目,理解题意。
红山小学校园里有一个花园,其中月季花的面积占1/4,杜鹃花的面积占1/3,其余是草坪。草坪的面积占几分之几?
师:花园里除了月季花和杜鹃花剩下的就是草坪了,你能说出如何求草坪的方法吗?
课件出示学生可能说出的方法:
花园面积-月季花面积=草坪面积
花园面积-(月季花面积+杜鹃花面积)=草坪面积
师:谁能解释“月季花的面积占1/4,杜鹃花的面积占1/3”,这两句话的含义?
引导学生说出:根据分数的意义,把花园的面积看作“1”。
2、根据题意,列出算式,并说算式意义。
师:现在花园的面积用“1”表示,月季花的面积用1/4表示,杜鹃花的面积用1/3表示,那么剩下的草坪面积该怎样列式计算呢?
学生尝试列出算式:
1-1/4-1/3 1-(1/4+1/3)
师:你们真是好样的!那么老师前面刚给同学们讲的故事:1块西瓜,沙师弟吃其中的1/3,八戒要吃其中的1/5,剩下的给悟空吃,悟空吃了这块西瓜的几分之几?
可以怎样列式解答呢?学生可以列出以下算式:
1-1/3-1/5 1-(1/3+1/5)
师:这4个算式与前两节课学习的分数加减计算有什么不同?(前两节课学习的是加法或减法的一步计算,这4个算式有的是连减,有的是加减混合计算。)
师:这节课我们学习的就是分数加减混合运算。(板书课题)
师:我想大家对加减混合运算应该不会陌生,有信心独立完成吗?
3、两组同学在书上独立完成1-1/4-1/3 和1-(1/4+1/3) 两个算式的计算,另两组在练习本上计算
1-1/3-1/5 1-(1/3+1/5)
指名4位同学上台板演。
再交流计算方法与结果。
明确:分数加减混合运算的运算顺序是和整数加减混合运算的运算顺序一样的。
设计意图:这节课的教学难点是分析例题中的数量关系,列出算式,难在被减数是个隐蔽的已知条件,要看作“1”,我在这个关键之处,以西天取经的有趣数学故事中蕴含的数量关系作铺垫,再引导学生探究例题呈现的条件,抓住题中分数所表示的意义这个关键,很自然地找到了隐蔽条件所应取的数值,这样化难为易,如何列式计算,不仅知其然,而且知其所以然。
三、巩固
1、练一练
(1)计算下面各题. 5/9+2/3-2/5 1-(1/2+1/6
(2)我国约有7/10的人口在农村,其余的在城市。城市人口大约占全国人口的几分之几?
独立完成,校对交流,明确算式的意义。
2、练习十五第1题
3/4-5/8+5/6 4/5-(1/6+3/10) 3/7-(9/11-1/2)
(1)学生独立计算,三人板演。
(2)校对交流,特别要注意比较各种方法的优劣。
(3)教师与学生根据具体情况一起小结:分数加减混合运算的运算顺序与整数相同,参加运算的几个分数,可以分步通分,分步计算;也可以一次通分,再计算。中间过程中的分数,如果先约分再参加运算比较简便,就及时约分。怎样算简便就怎样算。
3、练习十五第3题
理解题意后,解答前面两个问题。
鼓励学生根据题中已知条件提出用分数加减法计算的不同问题,可以是一步也可以是两步计算的,并让学生尝试解决提出的一些问题。
4、练习十五第2、4题 学生独立完成后交流校对。
教师课堂巡视,选择典型错误分析原因。
师:在分数加减混合运算时要注意什么?
教师根据学生的回答小结,提醒学生用好分数加减混合运算“四部曲” 。
课件出示:
分数加减混合运算“四部曲”
①认真审题是前提
②仔细思考是基础
③细心计算是关键
④自觉检验是保证
设计意图:将运算顺序编成简单易记的顺口溜,有助于学生掌握分数加减混合运算的运算顺序,从而正确进行分数加减混合运算。在学生计算过程中,抓住典型错例展示点评,并用分数加减合运算“四部曲”小结,有利于学生避免错误,提高学生的计算能力。
四、总结
这节课学习的是什么内容?你能把计算分数加减混合运算的经验和体会说给其他同学听听吗?
板书设计: 分数加减混合运算
把花园的面积看作“1”
1-1/4-1/3 1-(1/4+1/3)
把一个西瓜看作“1”
1-1/3-1/5 1-(1/3+1/5)
把全国人口数看作“1”
1-7/10
文档为doc格式